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Abstract

It is not known whether folate metabolism is altered during pregnancy to support increased DNA 

and RNA biosynthesis. By using a state-of-the-art LC tandem mass spectrometry technique, the 

aim of this study was to investigate differences in RBC folate forms between pregnant and 

nonpregnant women and between nonpregnant women consuming different concentrations of 

supplemental folic acid. Forms of folate in RBCs were used to explore potential shifts in folate 

metabolism during early erythropoiesis. Total RBC folate and folate forms [tetrahydrofolate; 5-

methyltetrahydrofolate (5-methyl-THF); 4α-hydroxy-5-methyl-tetrahydrofolate (an oxidation 

product of 5-methyl-THF); 5-formyl-tetrahydrofolate; and 5,10-methenyl-tetrahydrofolate] were 

measured in 4 groups of women (n = 26): pregnant women (PW) (30–36 wk of gestation) 

consuming 1 mg/d of folic acid, and nonpregnant women consuming 0 mg/d (NPW-0), 1 mg/d 

(NPW-1), and 5 mg/d (NPW-5) folic acid. The mean ± SD RBC folate concentration of the 

NPW-0 group (890 ± 530 nmol/L) was lower than the NPW-1 (1660 ± 350 nmol/L) and NPW-5 

(1980 ± 570 nmol/L) groups as assessed by microbiologic assay (n = 26, P < 0.0022). No 

difference was found between the NPW-1 and NPW-5 groups. We detected 5-methyl-THF [limit 

of detection (LOD) = 0.06 nmol/L] in all groups and tetrahydrofolate (LOD = 0.2 nmol/L) in most 

women regardless of methylenetetrahydrofolate reductase genotype. Most women consuming folic 

acid supplements had detectable concentrations of 5,10-methenyl-tetrahydrofolate (LOD = 0.31 

nmol/L). However, there was no difference in the relative distribution of 5-methyl-THF (83–84%), 

sum of non-methyl folates (0.6–3%), or individual non-methyl folate forms in RBCs across 

groups. We conclude that although folic acid supplementation in nonpregnant women increases 

RBC total folate and the concentration of individual folate forms, it does not alter the relative 

distribution of folate forms. Similarly, distribution of RBC folate forms did not differ between 

pregnant and nonpregnant women. This trial was registered at clinicaltrials.gov as NCT01741077.
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Introduction

Requirements for folate are elevated during pregnancy because of the increased demand for 

purines and pyrimidines to facilitate rapid RNA and DNA biosynthesis; the transfer of one-

carbon units via tetrahydrofolate, 10-formyl-tetrahydrofolate, and 5,10-

methylenetetrahydrofolate is key in these anabolic pathways (1). In a competing pathway, 5-

methyl-methyltetrahydrofolate (5-methyl-THF)7 facilitates remethylation of homocysteine 

to produce methionine, which is then converted to S-adenosylmethionine, the universal 

methyl donor in the body (1). The metabolic changes that occur in pregnancy to 

accommodate elevated folate requirements are not fully understood.

Periconceptual folic acid supplementation and folic acid fortification of enriched cereal 

grain products have been mandatory in North America since 1998 and have resulted in a 26–

47% reduction in neural tube defects (2–4). The Institute of Medicine (5) recommends that 

women able to become pregnant continue to consume 400 μg/d of folic acid from fortified 

foods and/or supplements, and at least 90% of North American women report taking 

prenatal vitamins containing folic acid during pregnancy (6–8). In Canada, available prenatal 

supplements contain either 1 or 5 mg of folic acid. Although recognition of the benefits of 

folic acid in the prevention of birth defects is acknowledged as a tremendous public policy 

success, some published accounts in the literature have associated folic acid supplementation 

during pregnancy with the risk of asthma, respiratory infection, wheezing, and central 

adiposity and insulin resistance in offspring; however, at least as many studies find no such 

association (9–11). An understanding of the physiologic shifts in folate metabolism that are 

associated with pregnancy and/or folic acid supplementation may improve our 

understanding of how maternal folic acid supplementation may influence the health of 

offspring both short- and long-term. Physiologic shifts in folate metabolism including in 

RBCs (reflecting folate metabolism earlier in their genesis) are well described in the 

literature secondary to dietary deficiencies, environmental exposures, and disease (12–18). 

We hypothesize that a shift toward nonmethylated forms of folate (e.g., tetrahydrofolate and 

formyl-tetrahydrofolate) during pregnancy may be one of the mechanisms to accommodate 

increased DNA and RNA biosynthesis.

There are several studies on the forms of folate in serum and RBCs of nonpregnant adults. It 

is estimated that 85–100% and 0–11% of the naturally occurring folate in serum is in the 5-

methyl-THF and tetrahydrofolate forms, respectively (19–21). The distribution of RBC 

folate forms reported in both males and premenopausal women suggests that 87–100% of 

the RBC folates are in the 5-methyl-THF form with a small percentage as tetrahydrofolate 

(0–15%) and 5,10-methenyl-tetrahydrofolate (0–2%) (22–26). Currently, the distribution of 

folate forms in RBCs of pregnant women and in nonpregnant women consuming various 

doses of folic acid supplements has largely been unexplored.

7Abbreviations used: LC-MS/MS, LC tandem MS; LOD, limit of detection; MeFox, 4α-hydroxy-5-methyl-tetrahydrofolate; MTHFR, 
methylenetetrahydrofolate reductase; MVM, multivitamin and mineral supplement; NPW, nonpregnant women; NPW-0, nonpregnant 
women not consuming a folic acid supplement; NPW-1, nonpregnant women consuming a 1-mg/d folic acid supplement; NPW-5, 
nonpregnant women consuming a 5-mg/d folic acid supplement; PW, pregnant women; SPE, solid-phase extraction; 5-methyl-THF, 5-
methyltetrahydrofolate.
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The purpose of this study was to compare the distribution of folate forms in RBCs of 

pregnant and nonpregnant women and among nonpregnant women (NPW) consuming 3 

different concentrations of supplemental folic acid (0, 1, or 5 mg/d) by using a new and 

improved state-of-the-art LC tandem MS (LC-MS/MS) technique (27–29). Understanding 

how pregnancy and folic acid supplementation influence the intracellular distribution of 

folate may help elucidate any metabolic adaptations that occur during reproduction or with 

pharmacologic doses of folic acid.

Methods

Participants

The study protocol was approved by the Research Ethics Board of the Hospital for Sick 

Children and informed written consent was secured. Women were excluded from 

participation if they had a preexisting medical condition or were consuming medications 

known to interfere with folate absorption or metabolism. Thirty-two healthy, nonsmoking 

women (aged 20–41 y) were recruited from staff and visitors at the Hospital for Sick 

Children in Toronto, Canada, between January and October 2008. Folic acid fortification of 

white wheat flour (150 μg/100 g flour) and grain products labeled enriched became 

mandatory in Canada in 1998 (30). Eight pregnant women (PW), between 30 and 36 wk of 

gestation, were consuming 1 mg/d of folic acid as part of a multivitamin and mineral 

supplement (MVM). The 24 remaining participants were all NPW (nonlactating) and were 

evenly divided into the following groups: not consuming a folic acid supplement (NPW-0); 

consuming 1 mg/d of folic acid as part of a MVM (NPW-1); and consuming 5 mg/d of folic 

acid as part of a MVM (NPW-5). All MVMs (Prenatal MVM, Life Brand; Materna, Nestle; 

Pregvit, Duchesnay; Jamieson Prenatal) included a source of vitamins B6 and B12. Women 

in the NPW-1 and NPW-5 groups were co-recruited with another study in which 

supplements were provided for 30 wk and verified by pill counts (31).

Study design and methods

Women participating in this cross-sectional study fasted overnight and refrained from taking 

their usual supplement (if using) on the morning of their study visit. During the visit, 

participants filled out a socio-demographic and supplement-use questionnaire and the 

validated Block Folic Acid/Dietary Folate Equivalents Screener (NutritionQuest) (32) 

Venous blood samples were collected into EDTA-lined tubes and processed within 2 h of 

collection. Aliquots of whole blood (100 μl) for determination of total RBC folate 

concentration by microbial assay were diluted 10 times with ascorbic acid (0.057 mol/L), 

mixed, incubated for 30 min at 37°C, and then frozen (33). Remaining whole blood was 

centrifuged (850 × g; 15 min at 4°C) to separate plasma and RBCs. The buffy coat was used 

for C677T methylenetetrahydrofolate reductase (MTHFR) genotyping (34). Sodium 

ascorbate solution (0.057 mol/L) was added to plasma samples prior to storage. Packed 

RBCs used for the later determination of folate forms by LC-MS/MS were washed twice 

and resuspended in an equal volume of NaCl (0.154 mol/L). The suspension was then 

diluted 20 times with ascorbic acid solution (0.028 mol/L, pH 4.2) and charcoal-treated 

human serum folate conjugase was added (100 μl human serum to ~100 nmol folate); this 
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hemolysate was incubated for 1 h at 37°C (35). Aliquots of whole blood and RBC 

hemolysates and plasma samples were stored at −80°C.

Total folate concentrations in whole blood hemolysates and plasma samples were measured 

by microbiologic assay, as described by Molloy and Scott (33), by using 

nonchloramphenicol-resistant Lactobacillus rhamnosus (ATCC7649; American Type Culture 

Collection) with folic acid to generate the standard curve. RBC folate content was calculated 

by using the analyzed whole blood folate concentration minus the plasma folate 

concentration corrected for hematocrit. A whole blood standard from the National Institutes 

for Biological Standards and Control (code 95/528, Hertfordshire, United Kingdom) with a 

certified folate content of 29.5 nmol/L was used in every assay. The overall inter-assay CV 

for the whole blood folate standard was 7.4% with a mean value of 28.2 nmol/L.

The concentrations of folate forms in RBCs [5-methyl-THF, pyrazino-s-triazine derivative of 

4α-hydroxy-5-methyl-tetrahydrofolate (MeFox), tetrahydrofolate, 5-formyl-tetrahydrofolate, 

and 5,10-methenyl-tetrahydrofolate] were determined by using LC-MS/MS (27–29). RBC 

hemolysates (150 μL) were mixed with ammonium formate buffer and amended with a 

mixture of 13C5-labeled folate internal standards. Sample clean-up was performed by using a 

50-mg phenyl solid-phase extraction (SPE) 96-well plate (Bond Elut 96; Agilent 

Technologies) and an automated 96-probe SPE system (Caliper-Zephyr; Perkin Elmer) (29). 

Samples were eluted from the SPE plate with an organic elution buffer containing ascorbic 

acid and analyzed overnight by LC-MS/MS in positive-ion mode by using electrospray 

ionization on a Sciex API 5500 triple-quadrupole MS system (Applied Biosystems) coupled 

to a HP1200C LC system (Agilent Technologies). Chromatographic separation was achieved 

by using a Luna C-8 analytic column (Phenomenex) with an isocratic mobile phase and a 

total run time of 7 min (29). Three whole blood hemolysate bench quality control pools were 

analyzed in duplicate in every run, bracketing the study samples. The between-run 

imprecision (n = 5 d) for 3 quality control levels (2 levels for tetrahydrofolate, 5-formyl-

tetrahydrofolate, and 5,10-methenyl-tetrahydrofolate) was 2.2–3.0% for 5-methyl-THF 

(20.6–37.1 nmol/L), 3.3–5.7% for MeFox (3.47–6.40 nmol/L), 4.6–8.2% for 

tetrahydrofolate (4.53–8.19 nmol/L), 5.5–5.6% for 5-formyl-tetrahydrofolate (2.97–5.60 

nmol/L), and 3.3–6.9% for 5,10-methenyl-tetrahydrofolate (4.84–9.75 nmol/L). The limit of 

detection (nmol/L hemolysate) values were 0.06 (5-methyl-THF), 0.08 (MeFox), 0.2 

(tetrahydrofolate), 0.2 (5-formyl-tetrahydrofolate), and 0.31 (5,10-methenyl-

tetrahydrofolate).

Statistical analysis

Prior to statistical analysis, RBC folate data were log-transformed. A Pearson product-

moment correlation coefficient was computed to assess the relation between RBC total 

folate concentrations determined by microbiologic assay and LC-MS/MS. Mean differences 

in RBC total folate concentrations, concentration of different folate forms, and the % 

distribution of different forms were determined by ANOVA. When a statistically significant 

difference was found, this was followed by pair-wise comparisons using the Tukey-Kramer 

method. Where indicated, individuals homozygous for the C677T MTHFR allele were 

removed from the analysis because it is known that these individuals accumulate non-methyl 
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folate forms (26,36,37). Statistical tests were performed by using SAS (version 9.1; SAS 

Institute), and P < 0.05 was considered statistically significant. Values in the text are 

expressed as means ± SDs.

Results

As illustrated in Figure 1, 32 women were enrolled in the study; however, 5 sample vials 

cracked during freezer storage (1 PW, 2 NPW-0, 2 NPW-1) and 26 samples were available 

for analysis. All women had a minimum of some college education, and there were no 

differences in age or education among the groups; however, there were differences in income 

and alcohol use (Table 1). There was no difference in dietary folate intake (naturally 

occurring and folic acid added as a fortificant) among groups, and all women reported 

consuming folic acid–fortified foods. Only 1 participant in the NPW-0 group consumed a 

vitamin and mineral supplement, and this consisted of calcium and vitamin D only. Except 

for 1 participant in the NPW-5 group who reported consuming her supplement every other 

day, all women consuming a supplement reported doing so daily. Mean duration of 

supplement use was longer in the PW group (46 ± 8 wk) compared with the NPW-1 and 

NPW-5 groups (30 ± 0 wk, P < 0.001).

RBC folate concentrations determined by microbiologic assay or LC-MS/MS (sum of folate 

forms) methods were strongly correlated (n = 26, r = 0.91, P < 0.0001). Mean RBC folate 

concentrations did not differ between the PW and NPW-1 groups as assessed by 

microbiologic assay or LC-MS/MS (Fig. 2). Women in the NPW-0 group had lower RBC 

folate concentrations than women in the NPW-1 and NPW-5 groups as assessed by LC-

MS/MS and lower RBC folate concentrations than women in the NPW-5 group as assessed 

by microbiologic assay. There was no significant difference in mean RBC folate 

concentrations between the NPW-1 and NPW-5 groups, measured by either microbiologic 

assay or LC-MS/MS.

Distributions of folate forms in RBCs and the C677T MTHFR genotype for each participant 

are found in Supplemental Figure 1. Mean group values are presented in Table 2 with 

individuals homozygous for the C667T MTHFR allele excluded. No differences in 5-

methyl-THF or MeFox were found between PW and supplemented NPW groups, expressed 

as a concentration or percentage distribution. Concentration of 5-methyl-THF in RBCs of 

women in the NPW-0 group was less than women in the NPW-5 group but did not differ 

from the NPW-1 group. No differences among the NPW-0, NPW-1, and NPW-5 groups 

existed in either 5-methyl-THF or MeFox as a percentage of total folate.

There were no statistically significant group differences in the sum of non-methyl folates or 

in the individual non-methyl folate forms expressed as a concentration or as a proportion of 

total folate among PW and NPW consuming 1 mg/d of folic acid. The concentration of the 

sum of all non-methyl folates (tetrahydrofolate, 5-formyl-tetrahydrofolate, and 5,10-

methenyl-tetrahydrofolate) of the NPW-0 group was less than in the NPW-1 and NPW-5 

groups as was the concentration of tetrahydrofolate. Nonetheless, no differences among the 

NPW-0, NPW-1, and NPW-5 groups existed in the sum of all non-methyl folate or in the 

individual non-methyl forms as a percentage of total RBC folate.
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As expected, we found tetrahydrofolate and 5,10-methenyl-tetrahydrofolate in the RBCs of 

women who were C677T MTHFR homozygous regardless of supplementation status 

(Supplemental Fig. 1); however, we also found measurable concentrations of 

tetrahydrofolate (>0.2 nmol/L hemolysate) and 5,10-methenyl-tetrahydrofolate (>0.31 

nmol/L hemolysate) in the RBCs of women who had both a wild-type and heterozygous 

genotype. Three of 5 NPW taking 0 mg of folic acid had measurable concentrations of 

tetrahydrofolate and 1 had 5,10-methenyl-tetrahydrofolate. Even after excluding C677T 

MTHFR homozygotes, most of the PW taking 1 mg of folic acid (4/6) had measurable 

concentrations of 5-formyl-tetrahydrofolate in RBCs, whereas there was only 1 of 4 women 

in the NPW-1 group who had measurable concentrations.

Discussion

There is strong evidence in the literature that folate requirements increase during pregnancy 

to support rapid fetal and uteroplacental growth (38,39), yet the changes that occur to 

support this rapid rate of anabolic activity have not been fully explored. In the present study, 

we did not find any difference in the distribution of folate forms in RBCs between the PW 

and NPW-1 groups, suggesting that there is little evidence folate is preferentially used for 

purine and pyrimidine synthesis for erythropoiesis in pregnancy. If a physiologic response in 

folate metabolism occurred to accommodate increased DNA/RNA synthesis, we would 

anticipate a shift in folate metabolism from re-methylation of homocysteine to methionine to 

purine and pyrimidine biosynthesis resulting in a corresponding increase in non-methyl 

folates forms.

To our knowledge, this is the first time the RBC folate forms between PW and NPW, or 

NPW consuming different concentrations of supplemental folic acid, have been directly 

compared. As far as we are aware, only 2 groups have examined the distribution of folate 

forms in blood during pregnancy. Obeid et al. (40) reported that the serum total folate, 5-

methyl-THF, 5-formyl-tetrahydrofolate, and tetrahydrofolate concentrations of PW 

supplemented with folic acid (400 μg/d) immediately prior to delivery were higher than 

concentrations in PW not consuming a folic acid supplement. However, as with the results of 

the current study, the distribution of the different folate forms as a relative percentage of 

total folate remained unchanged between the folic acid–supplemented PW and the 

nonsupplemented PW. In PW supplemented with folic acid, 92.9%, 0.94%, and 8.3% of 

serum total folate was in the 5-methyl-tetrahydrofolate, formyl-tetrahydrofolate, and 

tetrahydrofolate forms, respectively, compared with 85.4%, 0.95%, and 11.7% among 

nonsupplemented PW.

Houghton et al. (35) reported that the RBC folate forms of PW (an equal number of women 

with CC, CT, and TT C677T MTHFR genotypes) consuming 1 mg/d folic acid contained a 

significant proportion of RBC folates in the tetrahydrofolate form (55–59.5%). These data 

differ from those in the present study where only a small percentage of total folates were 

found as tetrahydrofolate regardless of whether women were pregnant or were supplemented 

with folic acid. In the former study, it was postulated that the elevated tetrahydrofolate 

concentrations reflected cellular uptake of high concentrations of circulating unmetabolized 

folic acid early in the erythroid lineage or alternatively reflected the elevated concentration 
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of high-affinity binding proteins during pregnancy, which are believed to protect labile 

tetrahydrofolate from degradation (41,42). Results from the current study suggest, however, 

that the elevated tetrahydrofolate concentrations in the latter study likely reflected an 

analytic aberration, potentially resulting from folate form interconversions during analysis, 

i.e., between 5,10-methylene-tetrahydrofolate and tetrahydrofolate, causing an 

overestimation of tetrahydrofolate (35,43).

There is considerable evidence in the literature suggesting that physiologic shifts in folate 

metabolism occur in response to certain conditions such as dietary deficiencies, 

environmental exposures, and abnormal anabolic conditions such as cancer. For example, 

dietary deficiencies of methionine (in kwashiorkor), folate, or vitamin B-12 result in a 

reduction of S-adenosylmethionine and a corresponding rise in 5-methyl-THF because of the 

reduced activity of methionine synthase, which converts 5-methyl-THF to tetrahydrofolate 

(12). S-adenosylmethionine concentrations play an important regulatory role in folate 

metabolism, and low concentrations stimulate MTHFR activity to shunt folate to 5-methyl-

THF and divert folate away from purine and pyrimidine biosynthesis (12). Correction of 

methionine, folate, or vitamin B-12 deficiency will reduce 5-methyl-THF, increase S-

adenosylmethionine, and hence increase formyl-tetrahydrofolate concentrations (substrate 

for purine biosynthesis) and conversion of 5,10-methenyl-tetrahydrofolate to thymidylate 

(for DNA biosynthesis) (13). It was reported that higher proportions of formyl-

tetrahydrofolate and tetrahydrofolate and lower proportions of 5-methyl-THF are found in 

colorectal tumors compared with normal mucosa with no correlation to RBC folate 

concentration (15). This shift in folate forms was accompanied by a decrease in global DNA 

methylation, thought to be an important mechanism in the pathogenesis of colorectal cancer 

(16). In the current study, we did not find evidence that RBC folate, reflecting metabolism 

earlier in erythropoiesis, was shunted toward purine and pyrimidine biosynthesis during 

pregnancy; however, we cannot discount the possibility that this may occur in other tissues.

Limitations to this study include the small sample size, although results obtained by using 

our new, sophisticated LC-MS/MS technique indicate that differences between the relative 

distribution of RBC folate forms, our main outcome, were small. To determine the small 

effect size observed between PW and the NPW-1 group, e.g., for % 5-methyl-THF, % sum 

of non-methyl-THFs, and % tetrahydrofolate, would require sample sizes of 72, 512, and 

364, respectively. Whether the small differences noted are clinically relevant and warrant 

larger studies is uncertain. Recent evidence suggests that it may take longer than 1 complete 

turnover of all RBCs (120 d or 17 wk) to reach a new steady-state RBC folate concentration 

after commencement of folic acid supplementation (44,45). PW in our study consumed folic 

acid supplements longer than NPW (46 ± 8 wk vs. 30 ± 0 wk, P < 0.001), which leaves open 

the possibility that differences in the main outcome (relative distribution of RBC forms) 

could have been due to differences in the duration of folic acid supplementation. Because no 

differences were found, we do not believe this limitation biased our study conclusions. 

Finally, it should be noted that all women in this study, including those in the NPW-0 group, 

were consuming folic acid–fortified foods. It is unclear whether the results presented herein 

can be generalized to reproductive-age women in countries where folic acid fortification is 

not present.
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In conclusion, the results of this study suggest that there is little evidence that folate is being 

preferentially used early in erythropoiesis for purine and pyrimidine synthesis during 

pregnancy because we found no increase in the proportions of non-methyl folate forms. 

Furthermore, there is little evidence that folic acid supplementation at high concentrations (1 

and 5 mg/d) alters the distributions of the folate forms in RBCs. Given our small sample 

size, it is unclear whether our results can be generalized to all reproductive-age women, 

particularly those not consuming folic acid–fortified foods, with baseline RBC folate 

concentrations lower than reported herein. The data presented herein do, however, provide 

the basis for further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Disposition of study participants and availability of samples for analysis. MTHFR, 

methylenetetrahydrofolate reductase; NPW-0, non-pregnant women not consuming a folic 

acid supplement; NPW-1, non-pregnant women consuming a 1 mg/d folic acid supplement; 

NPW-5, non-pregnant women consuming a 5 mg/d folic acid supplement; PW, pregnant 

women (consuming a 1 mg/d folic acid supplement).
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FIGURE 2. 
RBC total folate concentrations in PW consuming 1 mg/d of folic acid and nonpregnant 

women consuming 0, 1, or 5 mg/d of folic acid as determined by microbiologic assay or LC-

MS/MS. Women homozygous for the C677T MTHFR genotype were not included in these 

analyses. Values are means ± SDs; PW (n = 6), NPW-0 (n = 5), NPW-1 (n = 5), NPW-5 (n = 

7). Within an assay, means without a common letter differ, P < 0.05. MTHFR, 

methylenetetrahydrofolate reductase; NPW-0, nonpregnant women not consuming a folic 

acid supplement; NPW-1, nonpregnant women consuming a 1-mg/d folic acid supplement; 

NPW-5, nonpregnant women consuming a 5-mg/d folic acid supplement; PW, pregnant 

women.
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